
CS106B
Winter 2019

Handout 10
January 22, 2019

Section Handout 2

These problems are a joint effort by a number of different lecturers.

Problem One: Iteration Station
Topics: Vectors, sets, stacks, range-based for loops, for loops, parameter passing
Below are a bunch of functions that attempt to iterate over a container of some type. For each function,
determine whether

• the function works correctly,

• the function compiles but doesn’t correctly iterate over the elements, or

• the function won’t even compile.

In each case, make sure you can explain why!

void iterateVec1(const Vector<int>& vals) {
 for (int i = 0; i < vals.size(); i++) {
 cout << vals[i] << endl;
 }
}

void iterateVec2(const Vector<int>& vals) {
 for (int i: vals) {
 cout << vals[i] << endl;
 }
}

void iterateVec3(const Vector<int>& vals) {
 for (int i: vals) {
 cout << i << endl;
 }
}

void iterateSet1(const Set<int>& vals) {
 for (int i = 0; i < vals.size(); i++) {
 cout << vals[i] << endl;
 }
}

void iterateSet2(const Set<int>& vals) {
 for (int i: vals) {
 cout << i << endl;
 }
}

void iterateStack1(const Stack<int>& s) {
 for (int i = 0; i < s.size(); i++) {
 cout << s.pop() << endl;
 }
}

void iterateStack2(Stack<int> s) {
 for (int i = 0; i < s.size(); i++) {
 cout << s.pop() << endl;
 }
}

void iterateStack3(Stack<int> s) {
 while (!s.isEmpty()) {
 cout << s.pop() << endl;
 }
}

1 / 7

Problem Two: Debugging Deduplicating
Topics: Vectors, strings, debugging

Consider the following incorrect C++ function, which accepts as input a Vector<string> and tries to
modify it by removing adjacent duplicate elements:

⚠ void deduplicate(Vector<string> vec) { ⚠
⚠ for (int i = 0; i < vec.size(); i++) { ⚠
⚠ if (vec[i] == vec[i + 1]) { ⚠
⚠ vec.remove(i); ⚠
⚠ } ⚠
⚠ } ⚠
⚠ } ⚠

The intent behind this function is that we could do something like this:

Vector<string> hiddenFigures = {
 "Katherine Johnson",
 "Katherine Johnson",
 "Katherine Johnson",
 "Mary Jackson",
 "Dorothy Vaughan”,
 "Dorothy Vaughan”
};

deduplicate(hiddenFigures);
// hiddenFigures = ["Katherine Johnson", "Mary Jackson", "Dorothy Vaughan"]?

The problem is that the above implementation of deduplicate does not work correctly. In particular, it
contains three bugs. Find those bugs, explain what the problems are, then fix those errors.

2 / 7

http://www.imdb.com/title/tt4846340/

Problem Three: References Available Upon Request
Topics: Reference parameters, range-based for loops
Reference parameters are an important part of C++ programming, but can take some getting used to if
you’re not familiar with them. Trace through the following code. What does it print?

void printVector(const Vector<int>& values) {
 for (int elem: values) {
 cout << elem << " ";
 }
 cout << endl;
}

void maui(Vector<int> values) {
 for (int i = 0; i < values.size(); i++) {
 values[i] = 1258 * values[i] * (values[2] – values[0]);
 }
}

void moana(Vector<int>& values) {
 for (int elem: values) {
 elem *= 137;
 }
}

void heihei(Vector<int>& values) {
 for (int& elem: values) {
 elem++;
 }
}

Vector<int> teFiti(const Vector<int>& values) {
 Vector<int> result;
 for (int elem: values) {
 result += (elem * 137);
 }
 return result;
}

int main() {
 Vector<int> values = { 1, 3, 7 };

 maui(values);
 printVector(values);

 moana(values);
 printVector(values);

 heihei(values);
 printVector(values);

 teFiti(values);
 printVector(values);

 return 0;
}

3 / 7

Problem Four: The New Org Chart
Topics: Maps, strings
Suppose you have the organizational hierarchies of various companies showing who reports to who. For
example, across three different companies, you might have this hierarchy information:

a

b c d

f g

h i

e

j

k

l m

p qn o

r s t

u

In this diagram, person e reports directly to person b, who reports directly to person a, who is the CEO
of her company and therefore doesn't report to anyone.

This hierarchical information can be represented as a Map<string, string> associating each person
with their direct superior (that is, the person one level above them in the hierarchy). As an exception,
the heads of each organization are not present in the Map, since they don't report to anyone. For
example, in the above picture, the key h would have value g, the key g would have value d, the key d
would have value a, and a would not be a key in the map.

Given two people, you can tell whether they work for the same company by tracing from those people
all the way up to their companies' CEOs, then seeing whether those CEOs are the same person. For
example, in the above diagram, person e and person j work at the same company because both of them
report (indirectly) to a. Similarly, person n and person k are in the same organization, as are person c
and person d. However, person j and person m are not in the same company, since person j's company is
headed by person a and person m's company is headed by person k. Along similar lines, person u and
person b are in different companies, since person u runs her own company (she doesn't report to anyone)
and person b works at a company headed by person a.

Your job is to write a method

bool areAtSameCompany(const string& p1,
 const string& p2,
 const Map<string, string>& bosses)

that accepts as input two people’s names and and a Map associating each person with their boss, then
reports whether p1 and p2 work at the same company. You can assume the following:

• For simplicity, assume that each person has just one boss, that each company has just one CEO,
and that no person works at two or more companies.

• Everyone, except for the heads of companies, appear as keys in the Map. Therefore, if someone
doesn't appear in the Map, you can assume that they are the head of a company.

• Names are case-sensitive, so “Kate” and “KATE” are considered different people.

• p1 and p2 may be the same person.

• There can be any number of levels of management between p1 and her CEO and between p2 and
his CEO, including 0, and that number of levels doesn't have to be the same.

4 / 7

Problem Five: Xzibit Words
Topics: Strings, lexicons
Some words contain other words as substrings. For example, the word “pirates” contains a huge number
of words as substrings:

a

at

ate

ates

es

i

irate

pi

pirate

pirates

rat

rate

rates

Note that “pirates” is a substring of itself. The word “pat” is not considered a substring of “pirates,”
since even though all the letters of “pat” are present in “pirate” in the right order, they aren't adjacent to
one another.

Write a function

string mostXzibitWord(const Lexicon& words);

that accepts as input a Lexicon of all words in English, then returns the word with the largest number of
words contained as substrings.

5 / 7

Problem Six: Jaccard Similarity
Topics: Sets, TokenScanner, file reading, queues, strings
Let’s suppose that you have two text files – say, web pages, inscriptions on pottery shards, political
speeches, etc. – and you want to determine how “similar” those text files are. For example, you might be
a search engine (like Google) and want to recommend pages similar to another one, or you might be
trying to determine the author of an pseudonymous essay or piece of text. How might you go about
doing this?

In this exercise, we’re going to treat a text document not as a single piece of text, but as a bag of words.
Instead of representing a piece of text as a linear sequence of words, we’ll treat it as an unordered set of
words. For example, Yogi Berra’s famous quote

"I didn’t say all the things I said"

would be treated as the set

{ "all", "didn’t", "I", "said", "say", "things" }

with the elements in no particular order and duplicate words removed.

The advantage of this approach is that we can approximate the similarity of two documents by using a
measure called the Jaccard similarity. Given two sets S and T, the Jaccard similarity of those sets,
denoted J(S, T), is defined as follows:

J (S ,T) =
|S∩T|

|S∪T|

Here, |S ∩ T| denotes the number of words in common to S and T (that is, the cardinality of their
intersection), and |S ∪ T| denotes the number of words that appear in at least one of S and T (that is, the
cardinality of their union). If the sets S and T are completely identical, then J(S, T) = 1 (do you see
why?), and if S and T have absolutely nothing in common, then J(S, T) = 0 (again, do you see why?) As
the overlap between S and T increases, J(S, T) starts to increase.

The advantage of Jaccard similarity is that two documents that have a lot of common words and phrases
are likely to have a very large Jaccard similarity, while two documents that have very little in common
are likely to have a low Jaccard similarity.

Write a function

Set<string> wordsIn(istream& input)

that takes as input an input stream, then returns a set of all the tokens in that input stream. Using this
function, write a program that prompts the user for the names of two files, then computes their Jaccard
similarity.

If you finish this one early, consider this variant on the problem. A k-gram is a sequence of k
consecutive words or tokens out of a file, so given Yogi Berra’s above quote, the 2-grams would be as
follows:

"I didn't", "didn't say", "say all", "all the", "the things", "things I", "I said"

Jaccard similarity on documents tends to give much better answers when you compute it on 2-grams, 3-
grams, or 4-grams from the documents. Update your code so that it works with k-grams rather than
individual tokens.

6 / 7

Problem Seven: Serving Your Constituents
Topics: Maps, vectors, file reading, strings

Congratulations! You’ve been elected to the House of Representatives for California’s 18 th District, the
one that contains Stanford, replacing incumbent Anna Eshoo (whose offices, by the way, are a quick
bike ride from campus). You want to be responsive to the needs of your constituents, so you’ve set up an
online suggestion box where people can write in with what they think the most pressing issues are. The
problem is that you’ve gotten a lot of feedback and you need to figure out what your legislative priorities
should be.

One of your staffers has prepared a file that contains all of the suggestions that were submitted, one per
line. Your task is to write a function

Vector<string> topPriorities(const string& filename, int k);

that takes as input a number k, then returns the k most commonly occurring suggestions from the file,
sorted in descending order. For example, if the file Comments.txt contains these contents:

Cheaper housing
Less traffic
More quokkas
Less traffic
Cheaper housing
More rain
Better child care
Less traffic
Better child care
More denim
Cheaper housing
Cheaper housing

calling topPriorities("Comments.txt", 3) would return

["Cheaper housing", "Less traffic", "Better child care"].

Some notes on this problem:

• There might be multiple suggestions that appear the same number of times in the file. If so, and
if you need to tiebreak between them, feel free to tiebreak however you’d like.

• The Map type has the following, useful property: if you iterate over a Map using the for loop
syntax

for (KeyType key: map) {
 /* … */
}

it will visit the keys in the map sorted in ascending order. You might want to use that here.

• If k is negative or the file can’t be opened, you should report an error by calling the error()
function.

• If there are fewer than k distinct suggestions in the file, you should return all the unique
suggestions, still sorted in descending order.

• For simplicity, assume that all equal suggestions are spelled the same way and have the same
capitalization. Is that true in practice? Definitely not. But we can pretend that one of your staffers
has gone through and manually cleaned up the data.

7 / 7

	Problem One: Iteration Station
	Problem Two: Debugging Deduplicating
	Problem Three: References Available Upon Request
	Problem Four: The New Org Chart
	Problem Five: Xzibit Words
	Problem Six: Jaccard Similarity
	Problem Seven: Serving Your Constituents

